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ABSTRACT 

Although dynamic languages are becoming widely used due to the flexibility needs of specific software prod-
ucts, their major drawback is their runtime performance. Compiling the source program to an abstract machine’s 
intermediate language is the current technique used to obtain the best performance results. This intermediate 
code is then executed by a virtual machine developed as an interpreter. Although JIT adaptive optimizing com-
pilation is currently used to speed up Java and .net intermediate code execution, this practice has not been em-
ployed successfully in the implementation of dynamically adaptive platforms yet. 
We present an approach to improve the runtime performance of a specific set of structural reflective primitives, 
extensively used in adaptive software development. Looking for a better performance, as well as interaction with 
other languages, we have employed the Microsoft Shared Source CLI platform, making use of its JIT compiler. 
The SSCLI computational model has been enhanced with semantics of the prototype-based object-oriented com-
putational model. This model is much more suitable for reflective environments. The initial assessment of per-
formance results reveals that augmenting the semantics of the SSCLI model, together with JIT generation of 
native code, produces better runtime performance than the existing implementations. 

Keywords 
Dynamic languages, structural reflection, prototype-based object-oriented computational model, Shared Source 
CLI, JIT code generation. 

 

1. INTRODUCTION 
Since the appearance of the first abstract machine 
(UNCOL, 1961 [Ste61]), the notion of using the 
specification of a computational processor without 
intending to implement it (abstract machine) has 
been used in many different contexts [Die00]. The 
main objective of the UNiversal Computer Oriented 
Language (UNCOL) was simplifying compilers de-
velopment by employing a unique universal interme-
diate code. 

A virtual machine involves a specific abstract ma-
chine implementation. The employment of specific 
abstract machines implemented by different virtual 
machines has brought many benefits to different 
computing systems. The most relevant are platform 
neutrality (USCD P-machine [Cla82] or Forth 
[Moo74]), application distribution (ANDF, Architec-

ture Neutral Distribution Format [OSF91]), direct 
support of high-level paradigms (Smalltalk-80 [Gol-
83], SECD [Lan64] or Warren Abstract Machine 
[War83]) and application interoperability (PVM, 
Parallel Virtual Machine [Sun90]).1 

Despite of the many benefits obtained from using 
virtual machines, its main drawback has always been 
execution performance. Consequently, there has been 
considerable research aimed at improving the per-
formance of virtual machine’s application execution 
compared to its native counterparts. Techniques like 
adaptive Just In Time (JIT) compilation or efficient 
and complex garbage collection algorithms have 
reached such a point that Microsoft and Sun Micro-
systems identify this kind of platforms as appropriate 
to implement commercial applications. Nowadays, 
there are a lot of commercial languages and plat-
forms that employ the concept of virtual machine to 
develop software products. 

In parallel with the dominant virtual platforms (Sun’s 
Java Virtual Machine and Microsoft .net) and its 
type-safe programming languages (Java and C#), a 
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new approach of so called “dynamic languages” is 
emerging (examples are Python [Ros03], Ruby 
[Tho04] or Dylan [Sha96]). The main objective of 
these languages is to model the dynamicity that is 
commonly required in building software that is 
highly context-dependent due to the mobility of both 
the software itself and its users [ECO04]. Features 
such as meta-programming, reflection, mobility, dy-
namic reconfiguration and distribution are the do-
main of dynamic languages. Because of the benefits 
they offer, dynamic languages are employed in dif-
ferent scenarios such as adaptive programming 
[Mer03], dynamic aspect-oriented programming 
[Ort04] or high-level parallel software development 
[Hin03]. 

Dynamic languages, which also use abstract machine 
platforms, offer a much more relaxed type system at 
compile time that Java, C#, or any other type-safe 
language, in order to support their flexibility features 
–most part of the type system is dynamic. The un-
questionable benefits of type-safe languages could 
still be obtained with unit testing suites that are cur-
rently widely used –as an example PyUnit is the Py-
thon version of the well-known JUnit testing frame-
work. Using dynamic languages together with unit 
testing suites, the programmer can benefit both from 
the robustness of any type-safe language and from 
the flexibility of its dynamic features when needed 
[Mar03]. 

Dynamic Languages Performance 
Looking for code mobility, portability and distribu-
tion facilities, dynamic languages usually employ the 
concept of abstract machine. Since their computa-
tional model offers dynamic modification of its struc-
ture and code generation at runtime, the existing vir-
tual machine implementations are commonly devel-
oped by means of interpreters. Their flexibility and 
dynamicity capabilities make JIT native code genera-
tion (and its dynamic optimization) a complex task. 

The existing implementations of Python for the Mi-
crosoft .net platform (Python for .Net from the Zope 
Community, IronPython, and the Python for .Net 
research project from ActiveState) have been devel-
oped as compilers that generate virtual machine’s 
intermediate code which simulates Python features 
over the .net platform. The implementations that 
have used the Java Virtual Machine (Jython or JPy-
thon) have also employed the same approach. Micro-
soft and Sun platforms were created to support static 
languages that do not offer structural reflective fea-
tures such as adding attributes (fields) and methods 
at runtime. As these virtual machines do not support 
those primitives, additional code must be generated 
to support these features. 

ActiveState tried to modify different free implemen-
tations of the .net platform in order to compile Py-
thon Programming Language to .net native code, but 
they abandoned the project because the abstract ma-
chine design “was not friendly to dynamic lan-
guages” [Ude03]. As Java and .net virtual machines 
have been designed taking into account their static 
features in order to obtain the highest runtime per-
formance, it is difficult to add dynamic features to 
their existing implementations. 

The main disadvantage of dynamic languages is run-
time performance. The process of adapting an appli-
cation at runtime, as well as the use of reflection, 
induces a certain overhead at the execution of an 
application [Pop01]. However, as it happened with 
the implementation of Java Virtual Machine, speed-
ing up the application execution of dynamic lan-
guages might facilitate their inclusion in commercial 
development environments. Since the research done 
by Hölzle and Ungar in dynamic JIT optimizing 
compilers applied to the Self programming language, 
virtual machine implementations have become faster 
by generating binary code at runtime [Höl94]. 
Nowadays, dynamic adaptive HotSpot optimizer 
compilers combine fast compilation and runtime op-
timizations of those parts of the code that are exe-
cuted a higher number of times. These techniques 
have made virtual machines a real alternative to de-
velop many types of software products. 

The work presented in this paper employs these tech-
niques to natively support dynamic languages over a 
virtual machine. We will show how we are incorpo-
rating reflective features to the Shared Source CLI 
implementation of the Microsoft .net platform. Add-
ing dynamic reflective primitives to the platform 
internals will make it possible to compile dynamic 
languages directly to .net, obtaining performance 
benefits of using JIT native code generation. At the 
same time, applications developed in dynamic lan-
guages would be able to interoperate with any .net 
application or component, regardless of its program-
ming language. 

The rest of this paper is structured as follows. In the 
next section, we present the Microsoft Shared Source 
CLI and Section 4 introduces the set of reflective 
primitives to be added. Section 4 briefly describes 
the prototype-based object-oriented model as well as 
an analysis of how it can be incorporated to the 
SSCLI model. The specification of our new BCL 
reflective namespace is described in section 5 and 
section 6 summarizes the implementation issues. Fi-
nally, we analyze runtime performance (section 7) 
and section 8 presents the ending conclusions. 



2. SHARED SOURCE CLI 
The Microsoft SSCLI, Shared Source Common Lan-
guage Infrastructure (also known as Rotor), is a 
source code distribution that includes fully functional 
implementations of both the ECMA-334 C# lan-
guage standard and the ECMA-335 Common Lan-
guage Infrastructure standard, various tools, and a set 
of libraries suitable for research purposes [Stu03]. 
The source code can be built and run under Windows 
XP, FreeBSD 4.5 or Mac OS X. 

Rotor consists on 3.6 million lines of code that can 
be divided into 4 groups: 

• The Execution Environment. This is the virtual 
machine of the .net platform that includes the 
JIT compiler, the garbage collector, the class 
loaders and the common type system.  

• The Libraries. The SSCLI distribution includes 
the source code of its Base Class Library (BCL), 
runtime infrastructure and reflection (introspec-
tion) classes, networking and XML classes, and 
floating point and extended array libraries. 

• Compilers and Tools. Rotor includes a C# com-
piler (ECMA-334) and a Jscript compiler written 
entirely in C#. 

• Platform Abstraction Layer (PAL). This code 
implies the abstraction layer between the runtime 
environment and the operating system. 

Excluding the PAL section, we have performed 
modifications and enhancements in every part of the 
Rotor structure to develop our project. 

3. EXTENDING THE REFLECTIVE 
CAPABILITIES OF ROTOR 
Reflection has been recognized as a suitable tool to 
aid the dynamic evolution of running systems, being 
the primary technique to obtain the meta-
programming, adaptiveness, and dynamic reconfigu-
ration features of dynamic languages [Caz04]. Re-
flection is the capability of a computational system to 
reason about and act upon itself, adjusting itself to 
changing conditions [Mae87]. In a reflective system, 
its computational domain is enhanced by its own 
representation, offering at runtime its structure and 
semantics as computable data. 

The main criterion to categorize runtime reflective 
systems is taking into account what can be reflected. 
Following this classification, we can distinguish: 

• Introspection: The system’s structure can be 
consulted but not modified. Both Java and .net 
platforms offer this level of reflection. By means 
of the java.lang.reflect package (Java) and 
System.Reflection namespace (.net), the pro-

grammer can get information about classes, ob-
jects, methods and fields at runtime. 

• Structural Reflection: The system’s structure can 
be modified and the changes should be reflected 
at runtime. An example of this kind of reflection 
is the Python feature of adding fields –
attributes– or methods to both objects and 
classes. 

• Computational (Behavioral) Reflection: The 
system semantics can be modified, changing the 
runtime behavior of the system. For instance, 
metaXa –formerly called MetaJava [Gol97]– is a 
Java extension that offers the programmer the 
ability to dynamically modify the method dis-
patching mechanism. The mechanism most 
commonly employed in this level of reflection is 
Meta-Object Protocols (MOPs) [Kic91]. 

As mentioned above, the runtime reflective features 
of Rotor are restricted to the introspection level. 
However, the .net platform offers the facility to dy-
namically generate CIL code at runtime in a limited 
way (it only permits to create new types, not adding 
new methods to the existing classes) by means of its 
System.Reflection.Emit namespace. 
Dynamic languages offer the structural level of re-
flection in their computational model. This level of 
reflection is the one employed by dynamic languages 
to develop adaptive software. Much research on 
MOPs has revealed that computational reflection 
suppose a huge performance penalty in comparison 
with the benefits it provides [Tan03]. At the same 
time, many behavioral features could be simulated 
with structural reflection (e.g., adapting method in-
vocation semantics could be substituted by a method 
wrapping service developed with structural reflec-
tion). 

Reflective Facilities 
We have extended the .net CLI with a set of struc-
tural reflective primitives extensively used in dy-
namic languages, at the abstract machine level. A 
new namespace has been added to the Base Class 
Library (BCL): System.Reflection.Structural. 
We will show in Section 5 which are its specific 
primitives, but its functionality can be grouped into: 

• Attributes manipulation. It can be modified not 
only the structure of a class (altering the struc-
ture of all of its instances), but the composition 
of a single object. Attributes may be added, de-
leted or replaced. 

• Methods manipulation. Methods of classes can 
be added and erased dynamically. Therefore, the 
set of messages accepted by an object could 
change at runtime depending on their dynamic 



context. At the same time, a new method could 
be placed in a sole object. The body of these 
new methods can be obtained as copies of the 
existing ones, or it dynamically generated by 
means of the System.Reflection.Emit name-
space. 

The programmer could combine these facilities with 
the introspective services already offered by the .net 
platform, making the CLI an ideal system to develop 
language neutral adaptive software. 

Conceptual Problems 
There exist conceptual inconsistencies between the 
class-based object-oriented computational model and 
structural reflective facilities. These inconsistencies 
were detected and partially solved in the field of ob-
ject-oriented database management systems. In this 
area, objects are stored but their structure or even 
their types (classes) could be altered afterwards, as a 
result of software evolution [Ska87]. 

The first scenario of modifying class’s structure (at-
tributes) implies updating the composition of every 
object that is an instance of this class. This mecha-
nism was defined as schema evolution in the data-
base field. The modification of class’s instances 
could be performed when the class is modified (ea-
ger) or when the object is up to be used (lazy) 
[Tan89]; it is only necessary to know at runtime the 
class an object is instance of. The dynamic evolution 
of class’s methods and attributes can produce situa-
tions where code access to attributes or methods that 
do not exist in a specific execution point; these situa-
tions should be checked by a dynamic type checking 
mechanism, employing exception handling. 

Another possibility that a reflective model supports is 
much more difficult to be modeled in a class-based 
language. How can an object's structure be modified 
without altering the rest of its class's instances? This 
problem was detected in the development of MetaXa, 
a reflective Java platform implementation [Gol97]. 
The approach they chose was the same as the 

adopted by some object-oriented database manage-
ment systems: schema versioning [Rod95]. A new 
version of the class (called “shadow” class in 
MetaXa) is created when one of its instances is re-
flectively modified. This new class is the type of the 
recently customized object. 

This model causes different problems such as main-
taining the class data consistency, class identity, us-
ing class objects in the code, garbage collection, in-
heritance or memory consumption, involving a really 
complex implementation difficult to manage [Gol97]. 
One of the conclusions of their research was that the 
class-based object-oriented model does not fit well to 
structural reflective environments. They finally stated 
that the prototype-based model would express reflec-
tive features better than class-based ones [Gol97]. 

4. PROTYPE-BASED OO MODEL 
In the prototype-based object-oriented computational 
model the main abstraction is the object, suppressing 
the existence of classes [Bor86]. Although this com-
putational model is simpler than the one based on 
classes, there is no loss of expressiveness; i.e. any 
class-based program can be translated into the proto-
type-based model [Ung91]. A common translation 
from the class-based object-oriented model is by fol-
lowing the next scheme (Figure 1): 

• Similar object's behavior (methods of each class) 
can be represented by trait objects. Their only 
members are methods. Thus, their derived ob-
jects share the behavior they define. 

• Similar object's structure (attributes of each 
class) can be represented by prototype objects. 
This object has a set of initialized attributes that 
represent a common structure. 

• Copying prototype objects (constructor invoca-
tion) is the same as creating instances of a class. 
A new object with a specific structure and be-
havior is created. 

In class-based languages where classes are first class 
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Figure 1. Translation between the class and prototype based computational model. 



objects (Java, Smalltalk or C#), classes are repre-
sented by objects at runtime (e.g., in the .net platform 
instances of System.Type are objects that represent 
classes or another type). This demonstrates that, be-
sides not existing loss of expressiveness, the transla-
tion of the model is intuitive and facilitates applica-
tion interoperability, no matter whether the pro-
gramming language uses classes or not. This is the 
reason why this model has been previously consid-
ered as a universal substrate for object-oriented lan-
guages [Wol96]. 

Finally, this object-oriented computational model 
does model structural reflective primitives in a con-
sistent way –structural reflective languages such as 
Moostrap [Mul93] or Self [Ung87] have employed 
this model in a successful way [Ort05]. The proto-
type-based object model overcomes the schema ver-
sioning problem stated in Section 3.2. Modifying the 
structure (attributes as well as methods) of a single 
object is performed directly, because any object 
maintains its own structure and even its specialized 
behavior. As shared behavior is placed in trait ob-
jects, its customization implies the adaptation of 
types (schema versioning).  
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Figure 2. Structural reflective modification of 

objects. 
Figure 2 shows an example scenario. The initial 
point and p2 objects are clones of the pointProto-
type and their shared behavior is placed in the Point 
trait object. A new coordinate attribute has been 
added only to the point object. Employing the same 
approach, only the p2 object is capable to rotate its 
coordinates. Finally, all the derived objects from the 
Point trait object will be able to use the new dis-
tance method. 

Adapting Rotor’s Computational Model 
We have seen how the prototype-based object-
oriented model is capable of modeling structural re-
flection in a coherent way. However, the .net plat-
form employs a class-based model all over the CLI. 
Moreover, if we want to interoperate with any exist-
ing .net language or application, we must follow the 
class-based model. Therefore, our approach consists 

on continue using classes but the reflective primitives 
will offer a semantic of a prototype-based object 
model: 

• As classes are first class objects in the .net plat-
form, their structure is customized by means 
their System.Type instances. Altering their 
methods produces adaptation of shared behavior 
as if we were modifying a trait object in the pro-
totype-based object model. In case we adapt at-
tributes of System.Type objects, what we obtain 
is the customization of all the existing instances 
of the class adapted (schema evolution). Look-
ing for a good runtime performance, we have 
developed a lazy schema evolution mechanism 
[Tan89]. 

• Objects are treated as prototypes. Although in 
the class-based object model it is not possible to 
add specific behavior to a single object, neither 
to modify its attributes without adjusting its class 
structure, we permit to apply these structural re-
flective services to a specific class instance. Em-
ploying this model, we can dynamically add or 
erase both methods and attributes to a specific 
object, overcoming the abovementioned schema 
versioning problem. Of course, any compiler of 
a statically type-checked .net language (e.g., C#) 
needs to be modified to make the most of these 
reflective features; dynamic languages will em-
ploy them directly. 

As an example, we show in Figure 3 a Python syn-
tactic approach of a program that uses this combina-
tion of the class-based and prototype-based object 
model, when employing the structural reflective 
primitives (last feature shown in the example code is 
not really supported by the Python programming 
language). 

We first create a Point class with its constructor and 
the move and draw methods. An instance is then cre-
ated (point) and a draw message passed. Then we 
modify the structure of a single object adding a new 
z attribute and its respective draw3D method. Finally, 
we add a new behavior to the Point class (the getX 
method) and a new isShowing field to every Point 
instance, obtaining the schema evolution mechanism 
previously described. 

5. EXTENDING THE BCL 
The structural reflective features mentioned above 
require the enhancement of the .net platform seman-
tics. We have first implemented all of them in a new 
namespace called System.Reflection.Structural. 
The primitives were initially developed in C#, mak-
ing extensive use of the .net’s introspection facilities. 
This first implementation has empirically demon-



strated the viability of the proposed computational 
model, giving us a first assessment of performance.  

class Point:
"Constructor"
def __init__(self, x, y):

self.x=x
self.y=y

"Move Method"
def move(self, relx, rely):

self.x=self.x+relx
self.y=self.y+rely

"Draw Method"
def draw(self):

print "("+str(self.x)+
","+str(self.y)+")"

point=Point(1,2)
point.draw()   # (1,2)
# Modify attributes of a single object
point.z=3
print point.z # 3
# Modify methods of a single object
def draw3D(self):
print "("+str(self.x)+

","+str(self.y)+
","+str(self.z)+")"

point.draw3D=draw3D
point.draw3D() # (1,2,3)
# Modify methods of a class 
def getX(self):
return self.x

Point.getX=getX
print point.getX() # 1
# Modify attributes of 
# every Point instance
Point.isShowing=0

 
Figure 3. Example Python code using structural 

reflection services. 
This is a resume of the most significant elements we 
have added to the BCL (all of them, static methods of 
the Structural utility class): 

• addMethod and removeMethod methods receive 
an object or class (System.Type) as a first pa-
rameter indicating whether we want to modify a 
single object or a shared behavior. The second 
parameter is a MethodInfo object of the Sys-
tem.Reflection namespace. This object 
uniquely describes the identifier, parameters, re-
turn type, attributes and modifiers of a method. 
The user could create a new method employing 
the System.Reflection.Emit namespace, and 
add it to an object or class by means of its Meth-
odInfo. 

• The invoke primitive executes the method of an 
object or class specifying its name, return type 
and parameters. When the programmer uses the 

invoke method to pass a message to an object, it 
is checked if the object has a suitable method. In 
case it exists, it is executed; otherwise the mes-
sage is passed to its class (its trait object). A 
MissingMethodException is thrown if the mes-
sage has not been implemented. 

• The addField, getField and removeField 
methods are used to modify the runtime structure 
of single objects or their common schema 
(classes). If the first parameter is an object, the 
rest of instances of its class will not be modified. 
Adding a field to a class ensures that all of the 
existing instances contain the specified attribute; 
removing it guarantees that none have that at-
tribute. 

Employing these primitives, the code in Figure 4 
shows the C# version of the Python reflective pro-
gram of Figure 3. 
RuntimeStructuralFieldInfo rsfi = new Run-

timeStructuralFieldInfo("z", 
typeof(int),3, FieldAttributes.Public); 

Structural.addField(point,rsfi); 
// Draw3D is the MethodInfo a new method 
// created with System.Reflection.Emit 
Structural.addMethod(point,draw3D); 
Object[] pars={}; 
Structural.invoke(point,draw3D.ReturnType, 

"draw3D",pars); 
// getX is another MethodInfo object 
Structural.addMethod(typeof(Point),getX); 
Console.WriteLine(Structural.invoke( 

point,getX.ReturnType,"getX",params) ); 
rsfi = new RuntimeStructuralFieldInfo( 

"isShowing", typeof(bool),false, FieldAt-
tributes.Public); 

Structural.addField(typeof(Punto), rsfi); 

Figure 4. C# structural reflective program. 
We have implemented other useful primitives such as 
{field, method}Exists, getFieldValue, al-

ter{Method, Field} or getMethod, as well as addi-
tional classes such as RuntimeStructucturalField-
Info or {Member, Method, Field}Collection. Now 
that we have confirmed that this set of primitives are 
suitable to offer the adaptable computational model 
presented, we are implementing part of them as an 
enhancement of the semantics of specific CIL in-
structions. As an example, the invoke primitive 
should not be only part of the BCL interface; its se-
mantics must also be included in the call and call-
virt CIL statements. In order to achieve this func-
tionality we are also modifying the semantic analysis 
module of the SSCLI C# compiler –it should be al-
lowed to invoke non-existing methods at compile 
time. 

6. IMPLEMENTATION 
The complexity of Rotor implementation prevented 
us from directly implementing the operations inside 
the runtime environment. A set of steps were defined 
to gradually incorporate structural reflection in Ro-



tor. Modifying different parts of the system one by 
one –from BCL to the binary code generated at run-
time– has allowed us to refine the model using the 
experience gained. 

We have divided the development process into three 
steps: 

• Step 1: BCL-level implementation. In this step 
we have implemented all the reflective primi-
tives in C#, making use of .net introspective ca-
pabilities. The runtime environment was not 
modified in this step. The programmer should 
use all the reflective features explicitly by means 
of the BCL. 

• Step 2: VM-level implementation. In this second 
step we have moved the implementation of the 
BCL primitives developed in the previous step 
to an equivalent C implementation, included into 
the execution environment. The BCL interface 
was not modified, but the implementation was 
included inside the virtual machine getting sig-
nificantly better runtime performance. We used 
Rotor internal structures, data types and routines 
to our advantage. 

• Step 3: JIT-level implementation. The final step 
in our development has been modifying the Ro-
tor JIT code generation mechanism. We have ex-
tended some CIL instruction semantics modify-
ing the code generated by the JIT, in order to 
support structural reflection of existing .net ap-
plications. 

The Step 1 implementation employs a central data 
structure that uses four C# hash-tables to store rela-
tionships between added members and their owners 
(either classes or instances). When accessing mem-
bers, these hash-tables are consulted first and, if the 
member has not been reflectively added, the rest of 
the process continues searching in the class hierarchy 
using introspection. If the top of the hierarchy is 
reached without finding the appropriate member, a 
MissingMemberException is thrown. This implemen-
tation is much easier than developing this code inside 
the runtime environment, but its execution perform-
ance is significantly slower. 

Once the first step was developed and tested, we pro-
ceeded to include the implementation of these reflec-
tive services inside the execution environment. The 
most important decision to be done was finding the 
suitable place to put the data structure that stored the 
reflective information. Since direct object structure 
manipulation turns to be much more difficult than we 
expected, due to its fixed-size object design, we de-
cided to use each object’s Syncblock to store reflec-
tive data. Thus, we assigned each object (and class) a 
specific structure to store its reflective information. 

Although the VM-level implementation improved 
runtime performance considerably, reflective behav-
ior must still be explicitly stated by the programmer. 
That is to say, it is not possible to reflectively adapt 
legacy .net binary code, because structural reflection 
must be explicitly used. We are currently working on 
overcoming this lack, implementing the third step of 
the development process. 

Project Status 
Structural reflective primitives are being included 
into the CIL instruction semantics (3rd step). We have 
already included the attribute-manipulation ones. The 
new semantics has already been added to the ldfld 
and stfld CIL statements of the platform. 

The main idea to achieve the new behavior is to 
modify the native code generated by the JIT com-
piler. Instead of the original code that uses statically 
calculated member offsets, we generate a call to a 
helper function. This function explores the object 
structure in order to calculate member addresses us-
ing the reflective data included in the object’s 
Syncblock. 

Finally, we are working on modifying the JIT com-
piler to support reflective manipulation of methods. 
Our planned implementation will generate code to a 
new helper function, which will return the method 
address (depending on the stored reflective informa-
tion), performing the invocation of the returned ad-
dress. 

7. PRIMARY PERFORMANCE AS-
SESSMENT 
The use of a JIT compiler in a reflectively adaptive 
environment could introduce performance benefits in 
comparison with existing interpreted-based imple-
mentations. We have measured the performance of 
our second step implementation in comparison with 
four well-know Python platforms. This assessment 
will give us an idea of the benefits that could be ob-
tained in the future. 

We have measured execution time of all the primi-
tives described above in loops of 10,000 iterations, 
removing any I/O and graphical routines [Bul00]. All 
tests were carried out on a lightly loaded 3.2 GHz 
iPIV hyper-threading system with 1 Gb of RAM run-
ning WindowsXP. 

The specific well-known Python implementations 
used in our tests were: 

• CPython 2.4 (commonly referred as simply Py-
thon): This is probably the most widely used Py-
thon interpreted implementation; it is called 
CPython because it has been developed in C. 



• ActivePython 2.4.0. Another interpreted distri-
bution of Python (from ActiveState) available 
for Linux, Solaris and Windows. 

• Jython 2.1 (formerly called JPython): A 100% 
pure Java implementation of the Python pro-
gramming language. It is seamlessly integrated 
with the Java 2 Platform. 

• IronPython 0.6: is a new promising implementa-
tion of the Python language targeting the Com-
mon Language Runtime (CLR). It compiles py-
thon programs into CIL bytecodes that run on ei-
ther Microsoft's .net or the Open Source Mono 
platform. Its current release is a pre-alpha 0.6 
version.  
We have not used Zope’s Python for .net be-
cause it is not really the same approach as Jython 
in Java; it provides an implementation of the Py-
thon language and runtime engine in pure Java. 
Python for .net is not a re-implementation of Py-
thon, just an integration of the existing CPython 
runtime with .NET. Neither have we employed 
ActiveState Python for .net because they have 
quit this research project caused by the poor per-
formance results obtained [Ude03]. 

Table 1 shows the measurement of each primitive 
execution called 10,000 times, expressed in millisec-
onds. As we can appreciate in this table, Jython and 
IronPython obtain the worst performance results in 
all of the tests –IronPython do not implement dele-
tion of members, neither class manipulation. The 
requirement to implement Jython as a 100% pure 
Java offers a great interoperability with any Java 
program, but it causes a significant performance pen-
alty. The same happens to IronPython: generating 
CIL code that simulates the Python reflective model 

over a platform that does not support it produces low 
performance at runtime. Probably, this performance 
penalty is caused by the amount of extra code that 
must be generated to support the reflective model. 

Figure 5 and Table 1 show how our BCL implemen-
tation of structural reflective primitives is faster than 
the two systems that generate intermediate code: 
Jython and IronPython. Note than, since the range of 
values of Jython and IronPython are considerably 
different from the rest of implementations, we have 
separated both scales in Figure 5. Therefore, the val-
ues of these two implementations are shown on the 
right of the figure, whereas the rest appear on the 
left. Our BCL implementation is more than 30 times 
faster than Jython. 
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Figure 5. Execution time (milliseconds) of each 

primitive over different implementations. 

Primitive Jython IronPython BCL ActivePython CPython 
1. Add int attributes to an object 20,679 36,032 1,632 590 541
2. Add Object attributes to an object 20,290 32,013 1,762 611 580
3. Add int attributes to a class 20,063 440 551 591
4. Add Object attributes to a class 20,320 460 661 610
5. Delete int attributes from an object 18,406 971 561 591
6. Delete Object attributes from an object 19,028 961 611 601
7. Delete int attributes from a class 18,536 200 540 561
8. Delete Object attributes from a class 18,896 210 581 560
9. Access attributes from an object 18,607 23,000 530 521 530
10. Access non-existing attributes from an object 20,019 21,017 1,191 641 601
11. Access attributes from a class 18,577 150 511 481
12. Access non-existing attributes from a class 20,028 370 611 571
13. Add methods to an object 22,592 30,230 3,364 640 480
14. Add methods to a class 23,192 2,000 720 560
15. Invoke methods added to an object 20,624 24,010 3,564 760 600
16. Invoke non-existing methods to an object 25,276 25,567 1,840 720 804
17. Invoke methods added to a class 21,064 2,680 720 680
18. Delete methods added to an object 18,504 1,240 520 520
19. Delete methods added to a class 18,464 280 520 520

Table 1. Measurement of 10,000 calls to each reflective primitives. 



Figure 5 also illustrates how our system performance 
is not as good as the native interpreter implementa-
tion (CPython and ActiveState). However, the BCL 
implementation is the fastest when modifying class’s 
structure. This is due to the laziness of the schema-
evolution mechanism we have implemented. 

Best results are obtained by the two platforms that 
interpret the Python code by means of a C implemen-
tation: ActiveState and CPython. Both obtain quite 
similar results, which are significantly better than the 
BCL version when using objects –the most typical 
scenario– but worse when employing classes. 

As we have mentioned above, we are currently in-
cluding the structural reflective primitives into the 
JIT compiler. Although the project is still in an im-
mature point to release definitive performance re-
sults, we have enough information to get a first inter-
esting estimation. Executing the same test suite with 
the new attribute semantics added to the SSCLI run-
time environment, employs the 15.76% average time 
in comparison with the BCL version (the new im-
plementation is 10.88 times better that the first one). 
Furthermore, the execution of JITted structural re-
flective primitives requires an average of 11.58 % 
time in comparison with the time required in CPy-
thon. Figure 5 shows these values graphically (JIT). 

Although we have not developed the addition and 
deletion of methods in objects and classes, these first 
results give us an initial estimation of how the use of 
a JIT compiler can be employed to obtain good per-
formance of runtime adaptive applications. Certainly, 
since we have only developed part of the reflective 
computational model of Python –e.g. we have not 
implemented the Python feature of modifying the 
class an object is instance of–, the results obtained 
could not be directly compared with execution per-
formance of complete implementations of the Python 
programming language. What our work has revealed 
is that JIT compilation techniques are really appro-
priate to improve the performance of adaptive sys-
tems and languages. The key point is to modify the 
semantics of the abstract machine instead of generat-
ing intermediate code that simulates this adaptive 
behavior. Adding this semantics at the JIT compiler 
level is complex task, but appears to be worth the 
effort. 

8. CONCLUSIONS 
Abstract machines have been widely employed to 
design programming languages because of the many 
advantages they offer. Although performance was 
the main drawback in the past, modern techniques 
like adaptive (hotspot) Just In Time compilation have 
overcome this weakness. That is one of the reasons 

why virtual machine platforms are nowadays com-
mercially used. 

Currently, due to the special flexibility and adap-
tively needs of specific systems, the so called “dy-
namic languages” are becoming more and more used. 
These languages also make use of the process of 
compilation to an abstract-machine’s intermediate 
code. However, due to the complexity of its flexible 
semantics, the virtual machine is commonly devel-
oped as an interpreter. 

Looking for better performance results, there have 
been different attempts to implement Python and 
other highly dynamic languages for.net and Java 
platforms. They have resulted in systems with really 
poor performance, so bad that they were considered 
unusable. Some of them have abandoned this idea. 
We have evaluated two, Jython and IronPython, in 
comparison with other two interpreted versions –
CPython and ActivePython. The interpreted versions 
were much faster than the JIT compiled ones, when 
measuring their reflective features. Despite these 
results, we think that the use of a JIT compiler in 
reflective adaptive environments could obtain better 
performance than interpreting the intermediate lan-
guage. Since Java and .net platforms have not been 
designed with that purpose, modifying the semantics 
of the abstract machine (and, therefore, the imple-
mentation of the virtual machine) might produce the 
expected benefits. 

In order to obtain a first performance assessment, we 
have developed a set of structural reflective primi-
tives as part of the BCL .net platform. These primi-
tives implement the semantics of the prototype-based 
object-oriented model over the SSCLI class-based 
platform. This first implementation obtains better 
performance results that generating CIL code, be-
cause implies quite less code to execute at runtime.  

Finally, we have performed an initial assessment of 
performance results obtained with the inclusion of 
part of the structural reflective primitives into the 
SSCLI runtime environment. This initial evaluation 
gives us an estimation of the performance benefits 
that will be obtained in the future, when the whole 
reflective semantics will be included in the code gen-
erated by the JIT compiler. Although we have only 
added part of the reflective features of the Python 
programming language, the assessment presented 
reveals that using an adaptive-designed platform in 
conjunction with a JIT compiler involves important 
performance benefits to implement dynamic lan-
guages. 
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